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• Directed Graphs

• Classes are either identical or distinct

• Example of Relations on R2.

• Equivalence relations and Partitions

Directed Graphs

The following section will not be covered in the lectures but it might give
you a better understanding of relations.

Given R ⊆ A × A we can denote it by a directed graph or digraph
which consists of a set of vertices (or nodes) corresponding to elements
of A, and edges (or arcs) that connect vertices v and w if, and only if,
(v, w) ∈ R with an arrow pointing from v to w.

Example If A = {1, 2, 3, 4} and R = {(1, 1), (3, 2), (2, 3), (4, 1), (3, 3)} this
relation can be drawn as
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Example Starting with the digraph

a

b

c d

e

we see that the relation on {a, b, c, d, e} is

{(a, a), (a, b), (a, e), (b, d), (c, b), (d, d), (e, b)}.

For R to be reflexive means that in the digraph there is a loop on every
vertex.

ForR to be symmetric means that, in the digraph, on every path between
different vertices there will be two arrows.

For R to be transitive you have to look at every example in the digraph
of a path linking three vertices using two line. Then you have to check that
there is one line linking the end points (i.e. you have to check that if you
can go the ‘long way round’ then you can go the ‘direct’ way. Note that in
the definition of transitive the vertices x, y and z need not be different.

Example Let A = {1, 2, 3}.

(a) Let R1 = {(1, 2), (2, 1), (3, 3)}.
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This relation is not reflexive, (there is no loop on 1, say) is symmetric,
is not transitive ((1, 2) , (2, 1) ∈ R1 but (1, 1) /∈ R1).
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(b) Let R2 = {(1, 3), (3, 1), (2, 3), (3, 2), (1, 1), (2, 2), (3, 3)}.
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This relation is reflexive, is symmetric, is not transitive. ((1, 3) , (3, 2) ∈
R2 but (1, 2) /∈ R2)

(c) Let R3 = {(1, 2), (2, 1), (3, 1), (3, 2), (1, 1), (2, 2), (3, 3)}.
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This relation is reflexive, is not symmetric ((3, 2) ∈ R3 but (2, 3) /∈ R3),
is transitive.

You have to be careful when checking transitivity.

(d) Let R4 = {(1, 2), (2, 1), (2, 2)}.
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This relation is not reflexive, is symmetric, and is not transitive since
1R2 but 2R1 but 1NR1.
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(e) Let R5 = {(1, 1), (2, 2), (3, 3)}.
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This relation is reflexive, is symmetric, is transitive.

Classes are either identical or distinct

In the lectures the following result is stated.

Theorem 1 Suppose that ∼ is an equivalence relation on a non-empty set
X. Then for a, b ∈ X,

i) If a ∼ b then [a] = [b] ,

ii) If a � b then [a] ∩ [b] = ∅.

Assuming this result we can state a result that appears stronger, but is
not.

Theorem 2 Suppose that ∼ is an equivalence relation on a non-empty set
X. Then for a, b ∈ X,

i) a ∼ b iff [a] = [b] ,

ii) a � b iff [a] ∩ [b] = ∅.

The results now, instead of being implications, are equivalences.

Proof Because of Theorem 1 it suffice to prove

i’) if [a] = [b] then a ∼ b

ii’) if [a] ∩ [b] = ∅ then a � b.
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i’) Assume [a] = [b]. Proof by contradiction, so assume a � b. Then
by Theorem 1ii) we have [a] ∩ [b] = ∅, in particular [a] 6= [b]. This
contradicts the initial assumption [a] = [b]. Hence the assumption that
a � b is false and thus a ∼ b as required.

ii’) Assume [a]∩ [b] = ∅. Proof by contradiction, so assume a ∼ b. Then
by Theorem 1ii) we have [a] = [b] , in which case [a]∩[b] = [a] 6= ∅. This
contradicts the initial assumption [a] ∩ [b] = ∅. Hence the assumption
that a ∼ b is false and thus a � b as required. �

Examples of Relations on R2.

Now we get some confusing examples of relations on the points of R2. Con-
fusing because now (x, y) represents a point of R2, not that x and y are
related.

Example 3 Let X = R2 and ∼ be given by (x1, y1) ∼ (x2, y2) if, and only
if, x1 − x2 = y1 − y2. Show that this is an equivalence relation.

Solution left to students.

Example 4 Let X = R2 \ {(0, 0)} and ∼ be given by (x1, y1) ∼ (x2, y2) if,
and only if, x1y2 = x2y1. Show that this is an equivalence relation.

Solution The difficult property to verify is that it is transitive. Assume that
(a, b) ∼ (c, d) and (c, d) ∼ (e, f). From the definition of ∼ this means that

ad = bc and cf = de. (1)

Case 1, assume a 6= 0. Multiply the second equation by a to get

acf = ade = bce, (2)

having used the first equation. If c were equal to 0 then since (c, d) 6= (0, 0)
we have d 6= 0. Then from ad = bc = b × 0 = 0 we deduce a = 0, which
contradicts the assumption that a 6= 0, so we must have c 6= 0. Thus we can
divide through (2) by this non-zero c to get af = be, which is the definition
of (a, b) ∼ (e, f) .

Case 2, assume a = 0. Since (a, b) 6= (0, 0) we have b 6= 0. Multiply the
second equation of (1) by b to get

bde = bcf = adf, (3)
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having used the first equation. If d were equal to 0 then since (c, d) 6= (0, 0)
we have c 6= 0. Then from bc = ad = a × 0 = 0 we deduce b = 0, which
contradicts the fact that b 6= 0, so b 6= 0. Thus we can divide through (3) by
this non-zero d to get be = af , which is the definition of (a, b) ∼ (e, f) .

So in all cases we get (a, b) ∼ (e, f), showing that the relation is transitive.
�

Example 5 Let X = R2 and ∼ be given by (x1, y1) ∼ (x2, y2) if, and only
if, x1 − x2 = y1 − y2. What do the equivalence classes look like?

Solution To get started I would suggest choosing a point from R2 and cal-
culating its equivalence class. For instance, (3, 5). Then the class labeled by
(3, 5) is

[(3, 5)] = {(x, y) : (x, y) ∼ (3, 5)}

= {(x, y) : x− 3 = y − 5}

= {(x, y) : y = x + 2} .

This is the graph of the straight line y = x+2, gradient 1 going through
the point (3, 5). In general

[(a, b)] = {(x, y) : y = x + b− a}

is the graph of the straight line, gradient 1, going through the point (a, b).
Thus R2/ ∼ is a collection of parallel lines that cover the plane. �

Note how these straight lines have to be parallel. If there were not parallel,
they would intersect but we know from above that equivalence classes are
either identical or disjoint.

Example 6 Let X = R2 \ {(0, 0)} and ∼ be given by (x1, y1) ∼ (x2, y2) if,
and only if, x1y2 = x2y1. What do the equivalence classes look like?

Solution To get started I would suggest choosing a point from R2 and cal-
culating its equivalence class. For instance, (3, 5). Then the class labeled by
(3, 5) is

[(3, 5)] = {(x, y) : (x, y) ∼ (3, 5)}

= {(x, y) : 5x = 3y}

= {(x, y) : y = 5x/3} .
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This is the graph of the straight line y = 5x/3. You will notice that it
goes through the origin and the point we started with (3, 5). This is true in
general, the class

[(a, b)] = {(x, y) : y = bx/a}
can be represented by a straight line through the origin and the original point
(a, b). �

Note how these radial straight lines intersect at the origin, which has been
removed since different classes have to be disjoint.

Equivalence relations and Partitions

Recall from the notes

Theorem 7 Suppose that ∼ is an equivalence relation on a non-empty set
X. Then Π = X/ ∼, the set of equivalence classes, is a partition on X.

Theorem 8 Let Π be a partition of X and ∼Π the associated relation, so
a ∼Π b if, and only if, there exists a set A ∈ Π containing both a and b. Then
∼Π is an equivalence relation.

Theorems 7 and 8 can be combined in two ways.

We can start with ∼, an equivalence relation. By Theorem 7 X/ ∼ a
partition. Then Theorem 8 says that ∼(X/∼) is an equivalence relation. We
will show below that we have ‘gone round in a circle’ and ∼(X/∼)≡∼, i.e. the
relations are identical.

Alternatively we can start with Π, a partition. Now applying Theorem 8
first we get that ∼Π is an equivalence relation. Next we apply Theorem 7 to
get X/ ∼Π, a partition of X. We will show below that we have again ‘gone
round in a circle’ and X/ ∼Π= Π, i.e. the partitions are identical.

Theorem 9 If ∼ an equivalence relation and Π = X/ ∼ then ∼Π, is identical
to ∼.

Proof p.267 To show that ∼Π, is identical to ∼ we need to show that a ∼ b
if, and only if, a ∼Π b for all a, b ∈ X. Let a, b ∈ X be given. Then

a ∼ b ⇔ [a] = [b] by the theorem above,

⇔ a, b lie in the same equivalence class in Π = X/ ∼,

⇔ a ∼Π b by the definition of ∼Π .

Hence ∼ and ∼Π are the same. �
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Theorem 10 Assume that Π is a partition of X, that ∼Π is the relation
induced by Π, and X/ ∼Π is the partition induced by ∼Π. Then X/ ∼Π= Π.

Proof Recall that X/ ∼Π and Π are sets of sets. So to prove equality we
need show both set inclusions X/ ∼Π⊆ Π and Π ⊆ X/ ∼Π.

Proof of X/ ∼Π⊆ Π. Let A ∈ X/ ∼Π . This is a non-empty set so choose
any a ∈ A. Since Π is a partition of X there exists A′ ∈ Π such that a ∈ A′.
We need show that A = A′. For this we again are required to prove two set
inclusions, A ⊆ A′ and A′ ⊆ A.

Proof of A ⊆ A′. Let b ∈ A, so we have a and b ∈ A. By the definition
of X/ ∼Π this means that a ∼Π b, which in turn means that a and b
are in the same part of Π, i.e. a, b ∈ A′. yet b ∈ A′ true for all b ∈ A
means that A ⊆ A′.

Proof of A′ ⊆ A. Let c ∈ A′, so a, c ∈ A′. Since they are in the same
part of Π means that a ∼Π c which means that a and c are in the same
part of X/ ∼Π, which must be A. Yet c ∈ A for all c ∈ A′ means that
A′ ⊆ A.

Combine the two set inclusions to deduce A = A′ ∈ Π.

True for all A ∈ X/ ∼Π means that X/ ∼Π⊆ Π.

The proof of Π ⊆ X/ ∼Π is identical, simply replace Π by X/ ∼Π and
vice-verse throughout the proof just given. �
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